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Abstract: Agarofuranoids with oxygen functions at C-1 and C-2 were synthesized by allylic 
oxidation. Ketone 2  gave compound 8 and 9 by Grignard reaction. The configuration of C-2 in 8 
and 9 were identified by the CD spectroscopy of the benzoate 10. 
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Agarofurans have been found to be active on the nervous system in our institute. 
Since no member of natural agarofurans has C-1 or C-2 substituents, we decided to 
synthesize ketone 1 and 2, for the convenience of further modification. 

Our synthetic design for ketone 1, outlined in Scheme 1, was to employ β-epoxide 
3 as starting material. Reaction of epoxide 3 with CH3MgI cooled with ice-bath afforded 
alcohol 4 in 50% yield and reductive product 5 in 40% yield. The structure of 5 has been 
determined in our previous work1. 3β-Hydroxydihydroagarofuran has been reported by 
Hoffman2, but its oxidation product is the known 3-keto-isodihydroagarofuran3 with the 
methyl in 4β configuration. Dehydration of 4 with thionyl chloride and pyridine in ice-
bath gave olefin 6 in 70% yield, with no trace of the alternative dehydration product α-
agarofuran. The regioselectivity of this reaction is attributed to the fact that trans-diaxial 
elimination is predicted to lead to the formation of 6. The regioselective dehydration also 
verifies the α-orientation of 4-Me. Our strategy for introducing an oxygen onto C-1 was 
allylic oxidation of olefin 6. In general the double bond would shift and oxygen atom 
comes to C-2 position4. However allylic oxidation with t-BuOOH/SeO2, the double bond 
seldom shifts5. Oxidation of olefin 6 with t-BuOOH/SeO2 at 10℃ for 10 days and 
chromatographic separation gave ketone 1 in 30% yield, 40% of recovered starting 
material 6, and no double bond shifted product was found. 
 
   Scheme 1: a) MeMgI, ether, ice-bath; b) SOCl2, pyridine, ice bath; c) SeO2, t-BuOOH, CH2Cl2 
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Scheme 2: a) CrO3.Py2, CH2Cl2; b) RMgX, ether; c) 1. BuLi, THF; 2. PhCOCl 
 
 
 
 
 

Ketone 2 was likewise obtained by allylic oxidation (Scheme 2). Oxidation of 
olefin 7 with CrO3.Py2 complex in dichloromethane at 10℃  for 3 days and 
chromatographic separation, gave ketone 2 in 70% yield and 20% of starting material 7. 
Reaction of 2 with Grignard reagents yielded quantitatively alcohols 8 and 9 respectively. 
NMR spectra indicate both 8 and 9 are epimerically pure. In order to establish the 
configuration of C-2, alcohol 8 was converted  to benzoate 10, by  the normal  method 
for  tert-hydroxyl6. The + Cotton effect in the CD spectrum of the benzoate 10 indicates 
the allylichydroxyl in alcohol 8 is in α orientation, according to the rules summarized by 
N.Harda7. The exclusive production of C-2 α-OH epimer indicates that the α-face of this 
molecular is significantly more hindered than the β-face, attributable to the angular 
methyl group. 
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